The term broadband commonly refers to high-speed Internet access. Broadband in data communications can refer to broadband networks or broadband Internet and may have the same meaning as above, so that data transmission over a fiber optic cable would be referred to as broadband as compared to a telephone modem operating at 56,000 bits per second. In communications technology, the ability to send many signals over a single cable or other such communication medium. Broadband technology allows enormous amounts of data, such as that for movie videos, to be transferred over limited information infrastructure.
Now a days, there are many types of broadband created to synchronize with a technology. The types of broadband was designed purpose to achieve all user getting a connection to the internet. The types are Digital Subscriber Line (DSL), cable modem services, fiber optic, wireless broadband, satellites and Broadband over Powerline (BPL).
Third-generation (3G) and 2.5G cellular telephone networks, which have special provisions for delivering medium-speed packet data services, have not, in most instances, been directly competitive with broadband wireless services. They share a radio frequency air link and, in some cases, core technologies, but they have traditionally served a different type of customer and have presented different types of service offerings.
This may be changing. Recently, a new mobile standard known as High-Speed Downlink Packet Access (HSDPA) has emerged, and the first networks utilizing it are already in operation in Asia. HSDPA, which is an extension of Global System for Mobile Communications (GSM), the most widely used standard for digital cellular telephony, supports throughputs exceeding10 megabits per second (Mbps) while affording full mobility to the user. An HSDPA capability, which may easily and inexpensively be added to an existing GSM network, provides the network operator with a true broadband service offering capable of competing with cable or DSL data services. GSM networks, for the most part, still face the challenge imposed by bandwidth allocations that are marginal for provisioning large numbers of broadband customers, but HSDPA definitely undercuts many of the assumptions in the marketplace on the limitations of mobile services and appears to pose a real alternative.
2.0 INTRODUCTION
Broadband wireless sits at the confluence of two of the most remarkable growth stories of the telecommunications industry in recent years. Both wireless and broadband have on their own enjoyed rapid mass-market adoption. Wireless mobile services grew from 11 million subscribers worldwide in 1990 to more than 2 billion in 2005. Broadband users worldwide are finding that it dramatically changes how we share information, conduct business, and seek entertainment. Broadband access not only provides faster Web surfing and quicker file downloads but also enables several multimedia applications, such as real-time audio and video streaming, multimedia conferencing, and interactive gaming. Broadband connections are also being used for voice telephony using voice-over-Internet Protocol (VoIP) technology. More advanced broadband access systems, such as fiber-to-the-home (FTTH) and very high data rate digital subscriber loop (VDSL), enable such applications as entertainment-quality video, including high-definition TV (HDTV) and video on demand (VoD). As the broadband market continues to grow, several new applications are likely to emerge, and it is difficult to predict which ones will succeed in the future.
Broadband wireless is about bringing the broadband experience to a wireless context, which offers users certain unique benefits and convenience. There are two fundamentally different types of broadband wireless services. The first type attempts to provide a set of services similar to that of the traditional fixed-line broadband but using wireless as the medium of transmission. This type, called fixed wireless broadband, can be thought of as a competitive alternative to DSL or cable modem. The second type of broadband wireless, called mobile broadband, offers the additional functionality of portability, nomad city and mobility. Mobile broadband attempts to bring broadband applications to new user experience scenarios and hence can offer the end user a very different value proposition. WiMAX (worldwide interoperability for microwave access) technology is designed to accommodate both fixed and mobile broadband applications.
1.0 OVERVIEW
The term broadband commonly refers to high-speed Internet access. Broadband in data communications can refer to broadband networks or broadband Internet and may have the same meaning as above, so that data transmission over a fiber optic cable would be referred to as broadband as compared to a telephone modem operating at 56,000 bits per second. In communications technology, the ability to send many signals over a single cable or other such communication medium. Broadband technology allows enormous amounts of data, such as that for movie videos, to be transferred over limited information infrastructure.
Now a days, there are many types of broadband created to synchronize with a technology. The types of broadband was designed purpose to achieve all user getting a connection to the internet. The types are Digital Subscriber Line (DSL), cable modem services, fiber optic, wireless broadband, satellites and Broadband over Powerline (BPL).
Third-generation (3G) and 2.5G cellular telephone networks, which have special provisions for delivering medium-speed packet data services, have not, in most instances, been directly competitive with broadband wireless services. They share a radio frequency air link and, in some cases, core technologies, but they have traditionally served a different type of customer and have presented different types of service offerings.
This may be changing. Recently, a new mobile standard known as High-Speed Downlink Packet Access (HSDPA) has emerged, and the first networks utilizing it are already in operation in Asia. HSDPA, which is an extension of Global System for Mobile Communications (GSM), the most widely used standard for digital cellular telephony, supports throughputs exceeding10 megabits per second (Mbps) while affording full mobility to the user. An HSDPA capability, which may easily and inexpensively be added to an existing GSM network, provides the network operator with a true broadband service offering capable of competing with cable or DSL data services. GSM networks, for the most part, still face the challenge imposed by bandwidth allocations that are marginal for provisioning large numbers of broadband customers, but HSDPA definitely undercuts many of the assumptions in the marketplace on the limitations of mobile services and appears to pose a real alternative.
2.0 INTRODUCTION
Broadband wireless sits at the confluence of two of the most remarkable growth stories of the telecommunications industry in recent years. Both wireless and broadband have on their own enjoyed rapid mass-market adoption. Wireless mobile services grew from 11 million subscribers worldwide in 1990 to more than 2 billion in 2005. Broadband users worldwide are finding that it dramatically changes how we share information, conduct business, and seek entertainment. Broadband access not only provides faster Web surfing and quicker file downloads but also enables several multimedia applications, such as real-time audio and video streaming, multimedia conferencing, and interactive gaming. Broadband connections are also being used for voice telephony using voice-over-Internet Protocol (VoIP) technology. More advanced broadband access systems, such as fiber-to-the-home (FTTH) and very high data rate digital subscriber loop (VDSL), enable such applications as entertainment-quality video, including high-definition TV (HDTV) and video on demand (VoD). As the broadband market continues to grow, several new applications are likely to emerge, and it is difficult to predict which ones will succeed in the future.
Broadband wireless is about bringing the broadband experience to a wireless context, which offers users certain unique benefits and convenience. There are two fundamentally different types of broadband wireless services. The first type attempts to provide a set of services similar to that of the traditional fixed-line broadband but using wireless as the medium of transmission. This type, called fixed wireless broadband, can be thought of as a competitive alternative to DSL or cable modem. The second type of broadband wireless, called mobile broadband, offers the additional functionality of portability, nomad city and mobility. Mobile broadband attempts to bring broadband applications to new user experience scenarios and hence can offer the end user a very different value proposition. WiMAX (worldwide interoperability for microwave access) technology is designed to accommodate both fixed and mobile broadband applications.
Content
WiMAX Evolution